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LETTER TO THE EDITOR 

On a class of non-completely integrable equations with 
power-like nonlinearities and factorised associated linear 
operators 

H Cornille 
DPh-T, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France 

Received 8 July 1982 

Abstract. We explicitly build exponential-type bi-solitons of 
i + j -q  

i + j - l  
L$ = 1 ai&k = wnstant x K ~ - ' K ,  N integer2 2 

or equivalently L,G =constant (G,)N for the potentials G, = K. We assume both that 
their denominators have no soliton couplings and that L, are either factorised linear 
operators or germs of factorised operators. K N  and ICN-'& nonlinearities with associated 
factorised linear operators belong to a class of non-integrable equations sharing similar 
properties. 

Due to the lack of methods to solve them, the non-integrable, nonlinear equations 
are actually less popular among physicists than the integrable ones. However, they 
are also interesting to study (Makhankov 1978). It appears that there exists a class 
of non-integrable equations in 1 + 1 dimensions with the following features. 

(i) The nonlinearities are of the power type K N ,  KN-'K, (K being the solution 
of the equation and N an integer equal to 2 or greater) and may be other ones, for 
instance K 2  +KK, belongs to that class. 

(ii) Let us consider the linear part L$c of the equation where L, is a qth-order 
differential operator in 1 + 1 dimensions. Then, either L, is a factorised operator, or 
in the KN-'K, case, L N  is a germ differential operator which becomes a factor of L, 
when q > N. 

(iii) Let us define bi-solitons as solutions with two variables wi = exp(yix +pit ) ,  
i = 1,2, such that there exist powers of the solutions which are rational functions. 
Then their denominators are functions of A = 1 + o I + 0 2  without the couplings terms 
constant o l w z ,  if we do not consider trivial bi-solitons. 

(iv) There exists a direct method by which we simultaneously build both the linear 
operator L, and the appropriate power of the solution. 

We recall that these features were recently obtained for KZ (Cornille and Gervois 
1981, 1982a, b, c), K N N  3 2  (Cornille 1982), KZ+constant KK, and KK, alone 
(Cornille and Gervois 1982a, b, c). In this last case, the term generating higher-order 
linear operators was the second-order linear differential operator of Burger's 
equations. 

However, K2K, is also a classical nonlinearity and it seems worthwhile to know 
whether or not these above properties are particular to KK, or valid for the more 
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general KN-'K, case. This is the aim of the present letter. Burger's equation is 
equivalent to a second-order linear differential equation and higher-order linear 
differential equations give well defined sums of nonlinearities which do not reduce to 
KK,. However, as we shall see, the germs which for N > 2 generalise the Burger's 
one, are still defined by a set of linear differential equations but are applied to diferent 
powers of the same function. 

Here, we briefly report results on the class of nonlinear equations 
i + i = o  , .  

L,G = a,ja::iG =constant x [ G J N  N integer 3 2 
r + l = l  

written down for the potentials G with G, = K. Complete proofs and details will be 
provided elsewhere. We still assume both that the denominators of the bi-solitons 
have no soliton couplings ( A  = 1 + Xui) and either L,, q > N, is a factorised operator 
or L, = rN, q = N ,  is a germ of factorised operators (for q > N ) .  As in our previous 
works we use a direct method building simultaneously L, and the power N of G,. 

We summarise our general scheme in order to discover the bi-solitons. 
Firstly we define a germ linear differential operator r N ( x ,  t )  of order N such that 

for any differentiable F(A) and any differentiable A ( x ,  y ) we have the property 

[ r N ( x ,  t ) - L ? N o ( A x ) N a F N ~ ( A ) = O  (2) 

which means that the coefficients of aAF, aA+, . . . , a?G21F are identically zero. 
Secondly, for the concern of the present letter, we restrict A to 

2 

1 
A ( x ,  t )  = 1 + 1 wi wi = expjt + y i x )  Y1 f Y2 ( 3 )  

and make explicit the restrictions on the parameters of r~ in order that equation (2) 
leaves two really different yi values. 

Thirdly we introduce l , . -N(t) ,  a linear differential operator of order q - N  in ai , .  
From equation (3), we note that A,  = A -  1, a ,  = ( A  - l)aA, . . . and it follows that fq-N 
can also be written down witb the variables A, a,. 

Fourthly we define L, = lNlq-N and assume G = G(A), with A as written down in 
equation (3). From equation (2) we find 

L,G = ZN0 ( A ,  )N a F N (  1, -& ) 
and further we assume 

ac"NI,-N(t)G(h) = v(aAG(A))N. (4) 

L,G = f,-NiNG = v a ' ~ o ( h , ) ~ ( G ~ ) ~  = v a ' ~ o ( G , ) ~ .  

It follows from equations (2)-(4) that the factorised L, is associated to equation (1) 

(1') 

In the following we begin with the determination of germs iN satisfying equations 
(2), (3). Later on we solve the ordinary differential equation (4). We build, step by 
step, the operator fq- , , ( t )  or &,,(A) in such a way that a%(l,-,) when applied to the 
solution G(A) reproduces exactly (GA)N. 

Germs i N  and arbitrary A(x ,  y ) .  We start with 
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In equation (2) ,  the coefficient of aFNF being only (A,)N, it follows for iN that zii = 0 
for i + j  = N ,  except dNo and we can write 

i+i N 
N-1 

IN = dija,i,i+ d N O a x N .  
i + J = l  

Equation (2)  must be valid for anyF(A) and consequentlyforF = Ai we necessarily have 

= o i = 1 , 2  ,..., N - 1 .  (5) 
That this necessary condition is sufficient can be verified. For N = 2, equation (2)  
leads to (r2A)GA=0, for arbitrary G we have i2A=O and we recover the linear 
Burger’s condition. For N = 3, equation (2 )  gives 

( ~ ~ A ) G A + ( ~ ~ ~ A ~ - A ~ ~ A ) G A A ~ ~  

and consequently i3A= i3A2= 0. We find from equation (2)  and N = 4 that 
(i4A)G + ($i4A2 - A~~A)GAA + ($[,A3 -$Ai4A2 + h 2 i 4 A ) G ~ ~ ~  E 0, conse_quently i4A = 
i4A2 = &A3 = 0. Equation ( 5 )  represents implicit constraints on both I N  and A and for 
a very simple A we give the explicit relations. 

Germs iN and A = 1 + X f  exp(yix + t ) .  For N = 2 and an arbitrary operator i2 = 
a, + aloa, + U Z O ~ ; ~ ,  (equation (5)) leads to At + aloAx + a20Axx = 0 or 1 + aloyi +a2oyi .  
We have a Burger’s family of iz operators with two arbitrary parameters alo, a20, 

For simplicity, in the N = 3 case we put a02 = 0 so that we start with an arbitrary 
four-parameter operator i3 = 8, + dllaPr+ dlo& + d20aP2+d30a13 and require equation 
( 5 ) .  We find two linear differential conditions on the A: At+uioAx -2a30A,,, = 0, 
allA, +a20A, +3a3oAXx = 0. An elementary calculation shows that we have two 
arbitrary parameters with 

2 

a:o # 4a2o. 

For simplicity in the discussion we have found it more convenient to restrict the 
general starting iN to 

with the dij constrained by equations (3)-(5). For i4 = a, + Zoza:z + 
61laZ,+221a,32,+ dlo& + d208X22 + d30t& + d40d:4 we start with seven parameters which 
must be such that r4A = i4A2 = i4A3 = 0 and A given by equation (3). The analysis is 
more tedious but we still find a two arbitrary parameter family of i4. In the general 
6 case, a counting argument of the number of dii compared with the number of 
constraints such that really two independent yi  values survive shows that we must 
have, at the end, two arbitrary parameters. 

Compatible G and l,-N for simple examples. Our aim is to build simultaneously G and 

is the identity, L, = IN and (see table 1 )  we have the solution G = constant 
satisfying equation (4). 

(i) If 
log A which for N = 2 reduces to the Burger’s equation solution. 
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Table 1. Simple solutions. 

G = l o g A  l q - N  =Identity U =(-l)N+l(N-l)!  q = N 3 2  

(ii) Let us try to find G = constant A-'. The RHS of equation (4) is proportional 
and lq-N is an operator such that to ~ - ( N + l ) p  

This operator has (N  - 1)p  = q - N terms (see table 1). 
(iii) Solutions mixing log A and A-' powers. The general solution can be written 

G = a log A + X :  a i A - '  where k = (q - N ) ( N  - 1)-l  is an integer, q = 2N - 1, 3N -2, 
4N - 3, . , . and l q F N  = Z7Zyqj-lafi .  We must find the compatible sets of U, a,  (ai) ,  (71) 
values so that equation (4) is fulfilled. We rewrite lq-N in terms of A variables instead 
of r :+ = E;"=, (A- 1) Widh i  and the Stirling numbers %': (Abramowitz and Stegun 
1 9 6 4 )  appear, then we replace the set (771) by ( { I )  

I I I  

( 6 )  

and the 41 (or 7,) are recursively determined by triangular relations in terms of U, a,  
(ai) .  We eliminate U, ( V I )  and we find that a,  ( a i )  satisfy algebraic equations. This 
solution is too complicated to be explicitly determined in the general case and we 
sketch only two simple cases. First, there is a general solution G = -log A + 2: z!-'A-~ 
and the set of triangular relations for the are given in table 2 in terms of q, N and 
a coefficient p ( j ,  q, N )  defined by the identity: 

Secondly we consider G = a log A +  A-', I q W N  is an operator of order N - 1 and 
q = 2N - 1. The set of triangular relations for the ( f 1 )  contain a simple one 
( a  + 1)(X I !  fj~(-l)') = 0. a = -1 is one of the previous solutions G = -log A + A-' and 
we look at the other way a + 1 # 0. From the other relations (table 2), we can eliminate 
( f j I ) ,  v and obtain an algebraic equation for a. We give the explicit results for N = 3, 
q = 5 and N = 4, q = 7. 

G = A-'(b +A-'), We want to find compatible b, p values so that both G and l q - ~  
satisfy equation (4). We integrate, with respect to A, both sides of equation (4) N times 
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Table 2. Solutions with a log A term. 

(q-N)(N-l)-l q - N  

1 1-1 
G=-logA+ 1 M - ' A - ~  lq -N = 1 + ,E qi-lad 

Y = (N  - l)! (equation (6)) q = N + l(N - 1 )  I = 1,2,  

N-l 1 
A 1 

G=alogA+-  l q - ~ = l +  1 qj-l&f ~ = a ' - ~ ( - l ) ~ + ~ ( N - l ) !  q = 2 N - 1  

N-1 -1 

$1 (equation (6)) 1 l ! f l ( - 1 l f  = O  ? N - z = -  (N  - l ) !  (Fo (N  

1 6 
N = 4  q = 7 

v = - 6 L 3  75a2+2-17a = O  

G = a log A + -  1, = 1 -- a,[S -27a + (6 -2748 ,  +a?] 
A a37! 

and we apply a direct factorisation method building simultaneously l q - ~  and X(A-'). 
Different ways will be open depending whether bp is a positive integer, k, or not. 
We must kill all A-" terms having m Np, this will define a first operator SI and 
the complementary operator SII will reconstruct exactly the polynomial X(A-'). We 
introduce a first order a, operator raising by one unit power a sum of two successive 
A-m terms 

( I+~-~~ , )A-" (A+BA- ' )  = ~ - ( ~ + ~ ) ( ~ - m - ' ~ ) + m - ' ( m  +I)BA-("+~) (8) 
and apply it k times to G 

As long as p + k < Np, two possibilities occur: either bp = k or not. In the bp = k case, 
we have only one A-Np term and SII is an operator of order N. In the bp f k case, 
we have two terms A-Np and A--(Npf1) and SII is an (N - 1)th-order operator. In both 
cases we obtain 4 = (N  - l)p + 2N - 1 and l4-,, = SISII. 

(i) We assume pb = k and further p = (k + 1)(N - l)-' = integer (N - l)-l. We 
find for 91, zIII 
SI = Nfi2 (1 + s-'a,> ~ I G  = (b  + l)A-Np b = (N - l)(q - 2N)(q - 2N + 1)-' 

s 'P 
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If pb = k but p + k  +1 <Np we must use another differential operator (1 + 
B-la,)AA-B =AA-(B+l) in order to go to A-Np.  In this case we find 

r = p + k  + 1 s = p  

(9a') 

whereas ZII is the same as the preceding one given in equation (9a). Both cases are 

Table 3. ( a )  Solutions with two A and 6 = k/p. ( 6 )  Solutions with two A and 6 f k/p. 

(a  1 
k 

P 
G=A-'(b+A-') p = z  - N -  1 6 = - k integerX (equation (4')) I ,  -?:G = X  -Y1, (equation (9a)j  

k(N-1)  
b =  ( N -  -2N)Yl (equation (9a)) q 3 2 N +  1 b = q+l-2~ 1 s k s 4 - 2N - 1 -YI (equation 9'a )) 

q + l - 2 N  

2 b2(q  - 5 )  _-_  'lo - (6q -28)-E (4+9(q - 5)(3q - 13))+- 
v 2v 4v 3 (3q - 13)(3q - l l ) ( b  + 1) 

63(q  -5 ) '  
v- '=3 - qo-9 - q ,+27  - q 2 +  

( q  i5) ( q  i5l2 iq  i5)3 3(b + 1)(3q - 13)(3q -11) 

N = 3 q = 7 G = A-'+A-' 14=  (1 +a,) 1 +_L (%?+2a, + & , 2 ) )  i3G = a'30 %(G,f ( 34 
(6 1 

G=A-'(b+A-') p = ~  q - N -  1 6 f kp-' /q-N (equation (96)) 

b3p2(p + 1)(4p + 7) +6pb2(2p3 +6p2+ 4p - 1) + b(p  + 1)(12p3 + 2 7 p 2 +  8p - 1) + ( p  + 1)3(4p + 2) = 0 

q = 6  9b3+22b2+45b+36=0  2 + q l ( - l l b 2 - 3 9 b - y ) = 0  

5 x 7 x  11 x 13 
4 q1 

q,=q1(7+6b) V =  

q = 7  (b +1)(11b2+22b + 2 4 ) = 0  -1+q,(31b2+62b + 3 6 ) = 0  

q o  = l lql(Lf+ 1) v =q13 X4X 5 X6X7 

1 1  
1 1- 

i f b = - 1  l4 = (1 + f a 3 ) ( l + 4 a I ) ( i  +a,) v = 3 x 4 x 6 ~ 7  G = ----? 



Letter to the Editor L535 

given in table 3(a)  and further for N = 3 we give the explicit relations between vi, Y ,  

b, q which must be solved in the following order: 6 is known +qiv-' are functions 
of q, b +v(q, 6)+vi (4 ,  b). As an illustration for N =3, q = 7 ,  k = 6  = p  = 1, we 
explicitly write down the result. 

(ii) We assume b # kp as long as p + k s Np and we find 

LZI = "R-' (1 +s-'a,> L Z I G = A - ~ ~ ( ~  -N+l+NA-')Z,-N =LZILZ*I 
s =p 

(9b) 
N-1 

1 
~ I I =  1 +  C vj-latj L Z I I A - ~ " ( ~  - N  + 1 +NA-') =X(A-'). 

The main difference with the previous case is that b is unknown. From vi  = vi(p, b), 
v(p,  b) one must find the algebraic equation for b, with p dependent coefficients, and 
then go back to the determination of vi,  Y .  For N = 3 (table 3(b ) )  we write down the 
cubic equation for b and for q = 6,7 we quote all the relations. We notice that for 
q = 7, 6 = -1 is a simple solution for which we can give all the numerical values of Z4. 

Of course one can go on and consider more than two A as was done in the N = 2 
case (Cornille and Gervois 1982a, b, c). Let us emphasise once more that power-like 
nonlinearities K N  and KN-'Kx share common features when the associated linear 
operators are factorised and the bi-solitons do not have soliton couplings. They 
consistute a class of non-completely integrable equations and in a separate publication 
we enlarge this class, by including (BAiali)KN and BAJflNi nonlinearities. Another 
interesting feature here is the fact that the generalisation of the Burgers's germ i2A = 0 
is obtained with simple linear differential relations rNAi = 0, i = 1, . . . , N - 1. This 
result will be the starting point for the investigation of solutions associated to non- 
linearities KN-'Kx and different from the ones considered here. 

This work was completed at the Rockefeller University. I thank Professors A Pais 
and N Khuri for their warm hospitality. 
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